
ł <:;A ĎĭĳĤī ĈĮıįĮıĠĳĨĮĭ! Ćīī ıĨĦħĳĲ ıĤĲĤıĵĤģ! ĎĭĳĤī Ġĭģ ĳħĤ ĎĭĳĤī īĮĦĮ ĠıĤ ĳıĠģĤĬĠıĪĲ Įĥ ĎĭĳĤī ĈĮıįĮıĠĳĨĮĭ Įı ĨĳĲ ĲĴġĲĨģĨĠıĨes in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice .

tŀǊǘ ƻŦ LƴǘŜƭϯ tŀǊŀƭƭŜƭ Studio XE
Roadmap Notice: All information provided here is subject to change without notice.
Contact your Intel representative to obtain the latest Intel product specifications and roadmaps.

https://software.intel.com/en-us/articles/optimization-notice#opt-en

ĈĮįĸıĨĦħĳ ł <:;?# ĎĭĳĤī ĈĮıįĮıĠĳĨĮĭ! Ćīī ıĨĦħĳĲ ıĤĲĤıĵĤģ!
*Other names and brands may be claimed as the property of others.

Optimization Notice

Advisor Support Mail List vector.advisor @intel.com

Zakhar Matveev zakhar.a.matveev@intel.com

Intel Advisor Product Architect

Kirill Rogozhin kirill.rogozhin@intel.com

Intel Advisor Project Manager

Egor Kazachkov egor.kazachkov@intel.com

Intel Advisor Senior Developer

Intel Confidential 2

Contacts

mailto:vector.advisor@intel.com
mailto:zakhar.a.matveev@intel.com
mailto:kirill.rogozhin@intel.com
mailto:egor.kazachkov@intel.com

Optimization Notice

3

What is IntelŃ ĆģĵĨĲĮı

Vectorization analysis

Threading prototyping

Intel Confidential

Roofline

Cache Simulator and MAP Python API

ĈĮįĸıĨĦħĳ ł <:;A# ĎĭĳĤī ĈĮıįĮıĠĳĨĮĭ! Ćīī ıĨĦħĳĲ ıĤĲĤıĵĤģ!
*Other names and brands may be claimed as the property of others.

Optimization Notice

ČĤĳ ċĠĲĳĤı ĈĮģĤ ċĠĲĳĤı& ĎĭĳĤīŃ Advisor
Vectorization Optimization

Have you:
ÁRecompiled for AVX2 with little gain

ÁWondered where to vectorize?

ÁRecoded intrinsics for new arch.?

ÁStruggled with compiler reports?

Data Driven Vectorization:
ÁWhat vectorization will pay off most?

ÁĜħĠĳœĲ blocking vectorization? Why?

ÁAre my loops vector friendly?

ÁWill reorganizing data increase performance?

Á Is it safe to just use #pragma omp simd?

5

ĈĮįĸıĨĦħĳ ł <:;A# ĎĭĳĤī ĈĮıįĮıĠĳĨĮĭ! Ćīī ıĨĦħĳĲ ıĤĲĤıĵĤģ!
*Other names and brands may be claimed as the property of others.

Optimization Notice

The Right Data At Your Fingertips
Get all the data you need for high impact vectorization

Filter by which loops
are vectorized!

What vectorization
issues do I have?

Focus on
hot loops

How efficient
is the code?

What prevents
vectorization?

Which Vector instructions
are being used?

Trip Counts

Get Faster Code Faster!

6

ĈĮįĸıĨĦħĳ ł <:;A# ĎĭĳĤī ĈĮıįĮıĠĳĨĮĭ! Ćīī ıĨĦħĳĲ ıĤĲĤıĵĤģ!
*Other names and brands may be claimed as the property of others.

Optimization Notice

5 Steps to Efficient Vectorization
ĎĭĳĤīŃ Advisor ÝVectorization Advisor

7

1. Compiler diagnostics + Performance
Data + SIMD efficiency information

2. Guidance: detect problem and
recommend how to fix it

4. Memory Access Patterns Analysis 5. Loop-Carried Dependency Analysis

3. Trip Counts + FLOP: understand utilization,
parallelism granularity & overheads

1. Compiler diagnostics + Performance
Data + SIMD efficiency information

+ Binary Analysis

ĈĮįĸıĨĦħĳ ł <:;A# ĎĭĳĤī ĈĮıįĮıĠĳĨĮĭ! Ćīī ıĨĦħĳĲ ıĤĲĤıĵĤģ!
*Other names and brands may be claimed as the property of others.

Optimization Notice

Vector Efficiency: All The Data In One Place
Ēĸ ŕįĤıĥĮıĬĠĭĢĤ ĳħĤıĬĮĬĤĳĤıŖ

ĘĴıĵĤĸ" ċĨĭģ ĮĴĳ Ĩĥ ĸĮĴı ĢĮģĤ ĨĲ ŕĴĭģĤı ĵĤĢĳĮıĨĹĤģŖ Ġĭģ Ķħĸ

Achieved
Efficiency

Original (scalar)
code efficiency.
Corresponds
to 1x speed-up.

Upper bound:
100%
efficiency
4x gain

(VL=4)

Å Auto -vectorization : affected <3% of code

Å With moderate speed-ups

Å First attempt to simply put #pragma omp simd :

Å Introduced slow-down

Å Look at Vector Issues and Traits to find out why

Å Ćīī ĪĨĭģĲ Įĥ ŕĬĤĬĮıĸ ĬĠĭĨįĴīĠĳĨĮĭĲŖ

Å ĚĲĴĠīīĸ Ġĭ ĨĭģĨĢĠĳĨĮĭ Įĥ ŕġĠģŖ ĠĢĢĤĲĲ įĠĳĳĤıĭ

9

ĈĮįĸıĨĦħĳ ł <:;A# ĎĭĳĤī ĈĮıįĮıĠĳĨĮĭ! Ćīī ıĨĦħĳĲ ıĤĲĤıĵĤģ!
*Other names and brands may be claimed as the property of others.

Optimization Notice

Vectorization tied to your code

10

ĈĮįĸıĨĦħĳ ł <:;A# ĎĭĳĤī ĈĮıįĮıĠĳĨĮĭ! Ćīī ıĨĦħĳĲ ıĤĲĤıĵĤģ!
*Other names and brands may be claimed as the property of others.

Optimization Notice

ĉĮĭœĳ ďĴĲĳ ěĤĢĳĮıĨĹĤ# ěĤĢĳĮıĨĹĤ ĊĥĥĨĢĨĤĭĳīĸ
See detailed times for each part of your loops. Is it worth more effort?

11

1. Compiler diagnostics + Performance
Data + SIMD efficiency information

2. Guidance: detect problem and
recommend how to fix it

ĈĮįĸıĨĦħĳ ł <:;A# ĎĭĳĤī ĈĮıįĮıĠĳĨĮĭ! Ćīī ıĨĦħĳĲ ıĤĲĤıĵĤģ!
*Other names and brands may be claimed as the property of others.

Optimization Notice

Click to see recommendation

Advisor shows hints to move
iterations to vector body.

Get Specific Advice For Improving Vectorization

13

1. Compiler diagnostics + Performance
Data + SIMD efficiency information

2. Guidance: detect problem and
recommend how to fix it

3. Trip Counts + FLOP: understand utilization,
parallelism granularity & overheads

ĈĮįĸıĨĦħĳ ł <:;A# ĎĭĳĤī ĈĮıįĮıĠĳĨĮĭ! Ćīī ıĨĦħĳĲ ıĤĲĤıĵĤģ!
*Other names and brands may be claimed as the property of others.

Optimization Notice

Critical Data Made Easy
Loop Trip Counts

Knowing the time
spent in a loop is not

enough!

15

Check
actual trip

counts

Find trip counts for
each part of a loop

ĈĮįĸıĨĦħĳ ł <:;A# ĎĭĳĤī ĈĮıįĮıĠĳĨĮĭ! Ćīī ıĨĦħĳĲ ıĤĲĤıĵĤģ!
*Other names and brands may be claimed as the property of others.

Optimization Notice
16

ÁFLOPS by loop and function

ÁAll recent Intel processors

ÁInstrumentation (count FLOP) plus
sampling (time with low overhead)

ÁAdjusted for masking
with AVX-512 processors

Precise Repeatable FLOP Metrics

1. Compiler diagnostics + Performance
Data + SIMD efficiency information

2. Guidance: detect problem and
recommend how to fix it

3. Trip Counts + FLOP: understand utilization,
parallelism granularity & overheads

3. Memory Access Patterns Analysis

ĈĮįĸıĨĦħĳ ł <:;A# ĎĭĳĤī ĈĮıįĮıĠĳĨĮĭ! Ćīī ıĨĦħĳĲ ıĤĲĤıĵĤģ!
*Other names and brands may be claimed as the property of others.

Optimization Notice

Run Memory Access Patterns analysis,
just to check how memory is used in
the loop and the called function

Select loops of
interest

Improve Vectorization
Memory Access pattern analysis

18

ĈĮįĸıĨĦħĳ ł <:;A# ĎĭĳĤī ĈĮıįĮıĠĳĨĮĭ! Ćīī ıĨĦħĳĲ ıĤĲĤıĵĤģ!
*Other names and brands may be claimed as the property of others.

Optimization Notice
19

Advisor Memory Access Pattern (MAP) :
know your access pattern

for (i=0; i<N; i+ +)

A[B[i]] = C[i]*D[i]

for (i=0; i<N; i+ +)

A[i] = C[i]*D[i]

for (i=0; i<N; i++)

point [i].x = x[i]

Unit -Stride access

Constant stride access

Variable stride access

ĈĮįĸıĨĦħĳ ł <:;A# ĎĭĳĤī ĈĮıįĮıĠĳĨĮĭ! Ćīī ıĨĦħĳĲ ıĤĲĤıĵĤģ!
*Other names and brands may be claimed as the property of others.

Optimization Notice

Find vector optimization opportunities
Memory Access pattern analysis

20

1. Compiler diagnostics + Performance
Data + SIMD efficiency information

2. Guidance: detect problem and
recommend how to fix it

4. Memory Access Patterns Analysis

3. Trip Counts + FLOP: understand utilization,
parallelism granularity & overheads

5. Loop-Carried Dependency Analysis

ĈĮįĸıĨĦħĳ ł <:;A# ĎĭĳĤī ĈĮıįĮıĠĳĨĮĭ! Ćīī ıĨĦħĳĲ ıĤĲĤıĵĤģ!
*Other names and brands may be claimed as the property of others.

Optimization Notice

Enabling vectorization

Check dependencies

Use #pragma simd

18

ĈĮįĸıĨĦħĳ ł <:;A# ĎĭĳĤī ĈĮıįĮıĠĳĨĮĭ! Ćīī ıĨĦħĳĲ ıĤĲĤıĵĤģ!
*Other names and brands may be claimed as the property of others.

Optimization Notice

Is It Safe to Vectorize?
Loop-carried dependencies analysis verifies correctness

Vector Dependence
prevents

Vectorization!

Select loop for
Correct

Analysis and
press play!

23

ĈĮįĸıĨĦħĳ ł <:;A# ĎĭĳĤī ĈĮıįĮıĠĳĨĮĭ! Ćīī ıĨĦħĳĲ ıĤĲĤıĵĤģ!
*Other names and brands may be claimed as the property of others.

Optimization Notice

Correctness ÝIs It Safe to Vectorize?
Loop-carried dependencies analysis

Received recommendations to force vectorization of a
loop:

1. Mark-up loop and check for REAL dependencies

2. Explore dependencies with code snippets

In this example 3 dependencies were detected:

Á RAW ÝRead After Write

Á WAR ÝWrite After Read

Á WAW ÝWrite After Write

This is NOT a good candidate to force
vectorization!

Detected
dependencies

Source lines with Read and
Write accesses detected

24

